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ABSTRACT

Neural network techniques for multispectral image classification and spatial pattern
detection are compared to the standard techniques of maximum-likelihood classification
and spatial correlation. The neural network produced a more accurate classification than
maximum-likelihood of a Landsat scene of Tucson, Arizona. Some of the errors in the
maximum-likelihood classification are illustrated using decision region and class
probability density plots. As expected, the main drawback to the neural network method is

the long time required for the training stage. The network was trained using several
different hidden layer sizes to optimize both the classification accuracy and training speed,
and it was found that one node per class was optimal. The performance improved when
3x3 local windows of image data were entered into the net. This modification introduces
texture into the classification without explicit calculation of a texture measure. Larger
windows were successfully used for the detection of spatial features in Landsat and
Magellan synthetic aperture radar imagery.

INTRODUCTION

The neural network method has a potential advantage over maximum-likelihood in that

it does not require any assumption about the underlying statistics of the data (Lippmann,

1987). Another feature of neural networks is the ease with which the algorithm can be

adapted to handle the significantly different problem of spatial pattern detection. This

paper presents a comparison of the neural network and maximum-likelihood classifiers for

a sample classification problem, followed by two neural network spatial pattern detection

examples, the second of which focuses on the use of a threshold to provide simple

true/false results from the detection process.

MULTISPECTRAL CLASSIFICATION

Maximum-Likelihood Classifier

The maximum-likelihood multispectral image classifier assumes a particular

multivariate probability density (usually Gaussian) in order to form a discriminant function

for each class. These functions are then applied to each unknown pixel and the pixel is

assigned to the class with the highest discriminant value. If the assumption of a normal

distribution for each class is correct, then the classification has a minimum overall

probability of error and the maximum-likelihood classifier is the optimal choice (Swain,

1978).
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Neural Network Classifier

Operation of the neural network classifier is much like that of any standard classifier.

Instead of estimating the class statistics from the training data, however, the

interconnecting weights of the network nodes are adjusted in an iterative fashion, typically

by the backpropagation method (e.g., Rumelhart et al., 1986), until some targeted minimal

error is achieved between the desired output (the training classes) and actual output of the

network. For the classification phase, instead of calculating discriminant functions, as in

maximum-likelihood, the network is used in a feed-forward mode like a hard-wired circuit.

The entire image is fed into the net pixel-by-pixel, and a simple metric (such as the

maximum) is used to process the network output to make a class selection for each pixel.

Classification Map Comparison

A standard backpropagation neural network was implemented with a slight

modification to the training procedure to increase training speed. At fixed intervals during

training the learning rate and momentum terms (see Rumelhart et al., 1986) were adjusted

based on the change in mean square error of the output pattern from that of the previous

iteration. If the error increased, these values were reduced for subsequent training

iterations, and if the error decreased, they were made larger. This allowed for accelerated

convergence when the error was steadily decreasing, and led to faster and more stable

training. It also decreased the importance of the initial values set by the user for these

parameters.

The image data consisted of the six non-thermal bands of a Landsat Thematic Mapper

scene of Tucson, AZ, acquired on April 1, 1987. Separate training and test regions were

defined for each of 12 classes. A maximum-likelihood classifier was used to produce the

map of Figure 1. This figure illustrates three of the classes in different shades of gray:

white for 'urban residential', light gray for 'desert scrub', dark gray for 'foothills natural

vegetation', and black for all other classes. There are some substantial errors in these

classes. The 'urban residential' class is far too prevalent, particularly at the expense of the

two vegetation classes. The classification accuracy of the test sites was 89.5%.

The map shown in Figure 2 was produced after 50,000 training iterations by a neural

network with 6 input nodes, 18 hidden layer nodes, and 12 output nodes. The hidden layer

size was set to 18 because that results in the same number of classification parameters as

for maximum-likelihood. Thus, each classifier has the same number of unknowns (mean

and covariance for maximum-likelihood, interconnecting weights for the neural network)

with which to define the decision regions. The test site accuracy of the neural network
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classification was 93.4%. The network did not have the same problem with the 'urban

residential' class as maximum-likelihood. Both qualitatively and quantitatively, the neural

network map better reflects the actual distribution of classes in the image.

Figure 1. Maximum-likelihood classification. See text for classes.

Decision Boundaries and Class Probability Plots

Visualization of the decision regions produced by the two classifiers leads to a better

understanding of their capabilities. In order to view the decisions made over the entire

feature space, the dimensionality of the original image was reduced to two bands, the red

and near infrared. Both classifiers achieved a 77% test site accuracy with this reduced

dataset, and the error with respect to the 'urban residential' class was still observed in the

maximum-likelihood classification. The decision regions for the two methods are shown in

Figure 3. In the maximum-likelihood case this plot shows the highest surfaces of the
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intersecting probability density functions for each class. Figure 4 shows the probability

densities of the 'urban residential' and 'desert scrub' classes on the same scale. Figure 5

contains plots of the neural network output values for the same two classes. For all three

figures, the vertical axis represents the red band and the horizontal axis represents the NIR

band.

Figure 2. Neural network classification. See text for classes.

As expected, spectral correlation results in most of the classes being clustered along the

diagonal of the two spectral bands. The 'urban residential' class, which in reality is a

mixture of many different surface types, has a high variance, and thus a wider, lower,

probability density than the surrounding classes, as seen in Figure 4. Thus, in the

maximum-likelihood classification, other classes are chosen only where their relatively

narrow probability density functions protrude above the wide 'urban residential' density.

This leads to the decision region (Figure 3) for 'urban residential' surrounding that of 'desert
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scrub' and nearly surrounding that of 'foothills natural'. The same problem occurs in the 6-

dimensional case and is responsible for the errors discussed previously.

The neural network produces a fundamentally different type of classification. The

training data for a particular class in the maximum-likelihood case affects the statistics of

the training class only. Training data in the neural network method, however, is used not

only to boost the desired class output, but to suppress the other classes. Thus, the network

produces mutually exclusive "probability" densities (Figure 5) that do not overlap nearly as

much as those of maximum-likelihood. This gives the network the ability, in this case, to

differentiate between classes that are difficult to separate using first and second order

statistics alone.
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Figure 3. Decision regions for ML (left) and neural net (right).

1-Tarmac 2-Building 3-Grass 4-Foothills Natural 5-Sand
6-Desert Scrub 7-Bare Soil 8-Urban Residential 9-Asphalt

10-Riparian 11-Dense Urban 12-Shaded Foothills Natural
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Figure 4. Probability density for 'urban residential', 'desert scrub'.

Figure 5. Neural net output for 'urban residential', 'desert scrub'.
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Classification Speed

The two main disadvantages of the neural network classification method are the need

for user supplied initialization variables and the length and inconsistency of the training

phase. The main variable in using a neural network is the size of the hidden layer. It was

shown previously that selecting one that gave the same number of classification parameters

as maximum-likelihood was adequate. The maximum-likelihood classification took 590

seconds on a SUN Sparcstation 10. The 18 node hidden layer network was trained for

50,000 iterations, which required 53,605 seconds. Another 385 seconds were required for

the classification stage. Figure 6 is a plot of the test site accuracy versus training iterations.

It is shown in this plot that only 8000 training iterations were needed to achieve the

accuracy of maximum-likelihood.
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Test site accuracy for an 18 node hidden layer network.

Seven neural network training runs were carded out to 20,000 iterations for each of

several hidden layer sizes ranging from 1 to 36 nodes with the hope that an optimal

network structure would be found that would further reduce overall classification time.

The multiple runs were necessary to investigate the repeatability of the procedure, since the

network weights are initialized randomly, resulting in different paths for error convergence

during each training run. Figure 7 shows the range and average test site accuracy of the

seven runs for each hidden layer size. It is evident from this plot that a hidden layer size of

6 nodes and above can give accurate results. Also, it is clear that the consistency of the

training phase increases with hidden layer size. Based on these results, the optimal choice

for hidden layer size would be 12 nodes, which would give accurate, consistent results in

less time than the 18 node case.
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Figure 7. Test site accuracies obtained after 20,000 iterations.

Local Texture

The neural network structure is easily adaptable to include additional inputs, such as

ancillary data or windows of pixels. The Tucson image classification was repeated using a

3x3 window of pixels in each band, with the hope that the texture information introduced

by this window would result in a better classification. After 25,000 training iterations, an

18 node hidden layer network achieved a test site accuracy of 96.3%. The surprising result

was that the network required only about 3,500 iterations and 6,000 seconds to achieve the

accuracy of maximum-likelihood, despite a large increase in input nodes (from 6 to 54).

This is about the same time as required for the 12 node hidden layer single pixel case.

SPATIAL PATTERN DETECTION

Another problem of interest in remote sensing is that of spatial pattern detection.

Figure 8 shows the results of a detection of street intersections using a 49x49 window on

band 4 (NIR) of the same Tucson image used for the multispectral classification. The

network had 2401 input nodes, 2 hidden layer nodes, and 1 output node. The output was

trained to a high value with four sample intersections, three of which are outlined on the

original (upper) image. Sixteen non-matching patterns were used to train the output to a

competing low value. The detection peaks created at the training sites are indicated by the

arrows in the lower image, a map of network output.
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Figure 8. Detection of street intersections in TM imagery.

A second example involving the detection of craters in Magellan synthetic aperture

radar (SAR) imagery of Venus illustrates the ability to apply a threshold to the network

output and obtain true or false responses to the detection problem. Neural networks with

different hidden layer sizes were trained for 10,000 iterations using 25x25 and 35x35

windows on 15 craters and 52 non-crater sites extracted from the browse _mages of

Compressed-Once Mosaic Image Data Record (C1-MIDR) imagery. An additional 11

craters were then used to test the detection. To achieve similar results with a standard

technique such as correlation, each training crater would have to be correlated separately,

and the resulting correlation values combined in some way to give a final measure for each

image pixel. This would involve a great deal of computer processing (Hail, 1979).

The top image in Figure 9 is a SAR image containing one of the training craters (top

right) and one of the test craters (bottom left). The image at the lower left of the figure is

the output of a 25x25 window, 2 node hidden layer neural network. The image at the lower

right is the result of a true/false detection obtained by applying a threshold of 0.9 to the

image on the left. This corresponds to the trained output value for the craters. If the

threshold is lowered, more of the test craters are detected, at the expense of false detections
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in the areas around the craters. The results of this exercise are summarized in Table 1.

Depending on the desired level of detection versus false (bad) detections the threshold can

be adjusted away from the "ideal" detection value (i.e., the trained output value).

Table 1. True and false crater detections as a function of threshold.

25x25 win
2 h.1. nodes

25x25 win
5 h.1. nodes

6/11, 0 bad

25x25 win
8 h.1. nodes

Thr = 0.9 5/11, 0 bad 5/11, 0 bad 5/11, 0 bad

Thr = 0.86 6/11, 0 bad 6/11, 0 bad

25x25 win
15 h.l. nodes

35x35 win
5 h.1. nodes

5/11, 0 bad 2/11, 0 bad

5/11, 0 bad 9/11, 0 bad

Thr = 0.82 7/11, 2 bad 7/11, 1 bad 6/11, 1 bad 6/11, 0 bad 9/11, 1 bad

Thr = 0.78 9/11, 3 bad 10/11,2 bad 6/11, 3 bad 6/11, 1 bad 9/11, 2 bad

To detect

all 11

Thr = 0.73

6 bad

14,336 sec

Thr = 0.77

4 bad

3623 secTrain Time

Thr = 0.69

9 bad

26,531 sec

Thr = 0.76

6 bad

9170 sec

Thr = 0.73

5 bad

35,132 sec

Original

Magellan

SAR image

Neural network

output with
threshold at 0.9

Figure 9. Crater detection in Magellan SAR imagery.
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SUMMARY

A single neural network classifier can be applied to the very different problems of

multispectral image classification and spatial pattern detection. The results of the

multispectral classification were comparable to maximum-likelihood. It was found that for

the sample Landsat TM image, the neural network was better able to differentiate classes

with widely different variances, which can cause problems for the maximum-likelihood

classifier. Incorporation of a 3x3 window of inputs in each band improved the accuracy

without increasing the training time of the neural network. This method was then extended

to the use of larger windows for the detection of spatial patterns in Landsat and Magellan

imagery. A threshold with a value near the trained output value for the pattern was used to

provide true/false detection information. This technique could prove useful for content-

based image searching applications.
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